(1/p)=((p+4)/(2p^2))-((1)/(2p))

Simple and best practice solution for (1/p)=((p+4)/(2p^2))-((1)/(2p)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/p)=((p+4)/(2p^2))-((1)/(2p)) equation:


D( p )

2*p = 0

p = 0

2*p^2 = 0

2*p = 0

2*p = 0

2*p = 0 // : 2

p = 0

p = 0

p = 0

2*p^2 = 0

2*p^2 = 0

2*p^2 = 0 // : 2

p^2 = 0

p = 0

p in (-oo:0) U (0:+oo)

1/p = (p+4)/(2*p^2)-(1/(2*p)) // - (p+4)/(2*p^2)-(1/(2*p))

1/p-((p+4)/(2*p^2))+1/(2*p) = 0

(-1*(p+4))/(2*p^2)+1/p+1/(2*p) = 0

(-1*2*p*p*(p+4))/(2*2*p*p*p^2)+(1*2*2*p*p^2)/(2*2*p*p*p^2)+(1*2*p*p^2)/(2*2*p*p*p^2) = 0

1*2*2*p*p^2-1*2*p*p*(p+4)+1*2*p*p^2 = 0

2*p^3+2*p^3-8*p^2 = 0

4*p^3-8*p^2 = 0

4*p^3-8*p^2 = 0

4*p^2*(p-2) = 0

p-2 = 0 // + 2

p = 2

4*p^2*(p-2) = 0

(4*p^2*(p-2))/(2*2*p*p*p^2) = 0

(4*p^2*(p-2))/(2*2*p*p*p^2) = 0 // * 2*2*p*p*p^2

4*p^2*(p-2) = 0

( 4*p^2 )

4*p^2 = 0 // : 4

p^2 = 0

p = 0

( p-2 )

p-2 = 0 // + 2

p = 2

p in { 0}

p = 2

See similar equations:

| (6-V)(4v-2)=0 | | 3(2z-4)/7=2z-12 | | -2+9+5n=-17 | | 3(x-12)=8 | | 7x-3+4-(3-2x)= | | 7x-13=12-5x-5 | | -z^2+z=-12 | | 4k+2=k-8 | | -z^2+z=12 | | 9n-7=63+21 | | 5(3x-1/5-2)=70 | | 3(x-7)+4x=9(x+2) | | 1.4(y-10)=1-y | | (25a-20)-(24-30)-7a=21-(14-4a) | | x/5+1=x/6+3 | | x^2+y^2+10x-24y+69=0 | | (2x^2+18x+33)/(x+7) | | 7y-5=2y+15 | | 6X+10=2X+2 | | 8x-8=12x | | 2t-3=3(2+t) | | d(t)=-16t^2-32t+8 | | 2(x-7)=1 | | 10+3x=8x+25 | | 8x-25=10+3x | | 0=-0.2x^2+0.4x+0.2 | | 1x-4=6x-4 | | 0=x^2-63 | | ((4x-1)/3)+((5x-4)/4)=9 | | -x+23=2x+2 | | -7/6x+9/2=7/4x+10 | | 0=-2p^2-9p-4 |

Equations solver categories